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Abstract
We investigate the signatures of dynamical tunnelling in open quantum dots,
by implementing a soft-walled microwave cavity as a novel analogue system.
We explore the evidence for dynamical tunnelling by studying the evolution
of the wavefunction phase as a function of frequency and show evidence for
evanescent coupling to isolated orbits, including the existence of ‘dirty’ states
in the wavefunction that are generated from a degenerate pair of ‘clean’ states
when they are degraded by their tunnelling interaction. Our investigations
provide a useful analogue of quantum transport in open quantum dots, and
demonstrate the importance of dynamical tunnelling that arises from the mixed
classical dynamics that is inherent to these structures.

In recent years, semiconductor quantum dots have been widely explored as a versatile system
for studying the signatures of classical chaos in quantum mechanics. The conductance of such
dots exhibits mesoscopic fluctuations at low temperatures, which provide a powerful tool for
analysing the connection of quantum transport to the underlying classical dynamics of the
system [1–6]. Among the issues that have been revealed in these studies include measurable
transport results due to wavefunction scarring, whose characteristics depend strongly on the
nature of the environmental coupling to the quantum dot [5], and evidence for self-similar
structure in the magneto-conductance [3, 4]. More recent work [7] has even connected
the unique features of quantum transport in open dots to the existence of robust ‘pointer
states’, whose role has been emphasized in theoretical discussions of the classical-to-quantum
transition [8].

In many studies to date [1, 2], it has been popular to analyse the statistical properties of the
conductance fluctuations in open dots by making a simple assumption that these structures give
rise to fully chaotic (hyperbolic) classical dynamics [1, 2]. More recently [3, 4], however, there
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has been a growing appreciation that, due to the soft-walled nature of the confining profile in
these dots [9], and the presence of the lead openings that connect them to their reservoirs [10],
the relevant classical dynamics in these systems is in fact mixed (non-hyperbolic). This
important difference in the structure of the classical phase space leads to very significant
implications for the quantum mechanical properties of the dots. In one study, in particular,
it was argued that the appearance of wavefunction scarring in open dots can be related to the
dynamical tunnelling of electrons, to access isolated orbits in phase space that are decoupled
from the quantum-dot leads [6]. This process is distinct from tunnelling in the usual sense,
since the ‘tunnel barrier’ is provided by the existence of classically forbidden regions of phase
space, rather than any potential barrier [11–13].

Recently, we have explored the use of microwave cavities, as an analogue system for the
investigation of transport in open quantum dots. Such investigations are made possible by
the equivalence, for a two-dimensional system, of the Schrödinger and Helmholtz equations,
according to which a measurement of the electric field within the cavity is analogous to the
wavefunction in the corresponding quantum dot [14]. Our previous investigations of this
system have focused on the use of hard-walled cavities to mimic quantum-dot transport [15].
For a more quantitative comparison, however, in this letter we report on the implementation of
a soft-walled microwave resonator in which the signatures of dynamical tunnelling in transport
are investigated [16]. Unlike the situation in quantum dots,where only the quantum mechanical
transmission probability of electrons can be probed in experiment, in our soft-walled microwave
resonator we are able to investigate evidence for dynamical tunnelling by studying the evolution
of the wavefunction phase. Our study confirms the existence of dynamical tunnelling in soft-
walled quantum dots, showing evidence for evanescent coupling to isolated orbits, including
the existence of ‘dirty’ states [17] in the wavefunction that are generated from a degenerate
pair of ‘clean’ states when they are degraded by their tunnelling interaction.

In a microwave resonator with parallel top and bottom plates, the electric field E(x, y, z)
points from top to bottom in the z direction for the lowest modes, the transverse magnetic
modes. In the three-dimensional Helmholtz equation for E(x, y, z), the z dependence can be
separated out, resulting in a two-dimensional Helmholtz equation for E(x, y)[

−�xy +
(nπ

d

)2
]

E(x, y) = k2 E(x, y), (1)

where k is the wavenumber, d the height of the resonator, and n the kz quantum number. For
n = 0 this is equivalent to the stationary Schrödinger equation for a two-dimensional billiard
with Dirichlet boundary condition, which has been used in numerous experiments [14]. For
n = 1, however, the additional term can be used to mimic a potential V (x, y) by putting

d(x, y) ∼ 1√
V (x, y)

. (2)

The approach is not exact, since the separation of the z component works for constant d only,
but as long as the potential variation is small on the scale of the wavelength the error terms can
be neglected.

Figure 1(a) shows a sketch of the resonator used together with its height profile. The
minimum distance between the top and bottom plate was dmin = 6.3 mm outside the resonator
increasing gradually to dmax = 16.7 mm in the bottom of the resonator. Due to a small and
unavoidable misalignment of the top plate there were variations of the height over the area of
the resonator of up to 0.9 mm. The corresponding potential was constant in the bottom of the
dot and increased quadratically close to the boundaries, both in the vertical and perpendicular
directions as well as along the diagonals; see figure 1(b). Such potential shapes are typical for
quantum dots realized by remote surface gates [18].
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Figure 1. (a) Height profile of the resonator. The top is 10.4 mm above the bottom; between
neighbouring contour lines there is a height difference of 2.08 mm. (b) Corresponding potential
V (q) along a cut, where L = 50 mm, and L0 = 60, 140, and 152 mm for the vertical, horizontal,
and diagonal cuts, respectively.

Two antennas A1 and A2 serving as source and drain for the microwaves were attached
to the leads, which were closed by absorbers. A third antenna A3 was moved on a quadratic
grid of period 5 mm to map out the field distribution within the dot. Details can be found
in our previous publications [15, 19]. For νmin = c/(2dmax) = 9 GHz only the n = 0
modes exist. They are not observed, however, since the billiard is open in the xy plane. For
νmin < ν < νmax = c/dmax = 18 GHz the n = 1 modes exist as well. Another frequency
threshold of relevance is found at νT = 12.5 GHz. Below this frequency all n = 1 states are
bound whereas for higher frequencies the states extend into the attached channels and have
thus to be interpreted as resonance states.

Figure 2 shows the modulus of the transmission S21 between antenna A1 in the entrance
and antenna A2 in the exit waveguide, together with the modulus of the reflection S33 at the
movable antenna A3 at a fixed position within the billiard in the upper panel. The solid vertical
line at 12.5 GHz corresponds to the threshold frequency νT where the billiard states can couple
to the waveguides. Correspondingly, the transmission is close to zero below this frequency.
The vertical dotted lines correspond to a number of selected resonance eigenfrequencies,
the corresponding wavefunctions for which are shown in the lower panel. The reflection is
dominated by three scar families, two of them associated with the vertical and the horizontal
bouncing ball, the third one corresponding to a cross-like structure. The cross-like structure
was not observed in our previous experiments on a microwave dot with hard walls. Instead we
found a scar with the shape of a loop connecting the entrance and exit ports [19].

A comparison of the reflection and the transmission measurements shows that the
bouncing-ball states dominating the reflection contribute only weakly to the transmission.
The cross-like structures, on the other hand, exhibit maxima not only in the reflection but also
in the transmission spectrum. This is in qualitative agreement with our measurements of a
hard-wall microwave dot where we also found that only those states connecting the entrance
and exit ports turned out to be relevant for the transport.

In the first panel of figure 3 the eigenfrequencies of all identified vertical bouncing ball
states are shown by stars, together with two representative members of the family. Again
the vertical line denotes the threshold where the attached channels open. The second and
third panels show the respective results for the horizontal bouncing ball and the cross-like scar
family.

The eigenfrequencies of the members of the three families can be obtained semiclassically
by means of a WKB approximation. In one-dimensional systems with two classical turning
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Figure 2. Upper panel: measured reflection spectrum |S33| with antenna A3 at a fixed position,
and transmission spectrum |S21| between antennas A1 and A2 in the entrance and the exit port,
respectively. Lower panel: wavefunctions for four selected frequencies obtained from the reflection
at antenna A3 as a function of the position.

points q1, q2 the action is quantized according to

Sn = 2
∫ q2

q1

p dq = 2
∫ q2

q1

√
2m(En − V (q)) dq = 2π h̄(n + 1

2 ). (3)

This gives an implicit expression for the eigenenergy En of the nth state. Equation (3) may be
applied directly to the scarred structures observed in the experiment. For the two bouncing-ball
families a one-dimensional treatment is obviously justified, and the cross-like structure may be
looked upon as a superposition of two one-dimensional structures, oriented along the diagonals
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Figure 3. Frequencies of the eigenvalues associated with the three scar families, together with two
representative members of the family. Measured values are plotted by stars, calculated ones by
diamonds.

of the billiard. For the cross-like structures, the application of the WKB approximation is
somewhat questionable above 12.5 GHz, where the states start to extend into the waveguides,
but this leads only to small deviations.

Inserting the potential of figure 1 into equation (3), the eigenenergies for all members of
the three families can be calculated. The eigenfrequencies are given by νn = √

2m Enc/(2π h̄)

and are plotted in figure 3 by diamonds. The overall agreement of the experimental results
with the predicted theoretical values is very good. To take possible misalignments between
the top and bottom plates into account, a gradient of dmin with an adjustable slope was allowed
to improve the agreement (which was good already without this procedure). The resulting
variations of dmin were below the experimental uncertainties given above.



L196 Letter to the Editor

Figure 4. Upper panel: wavefunctions in the low frequency wing, the centre, and the high frequency
wing of the resonance, marked by the letter b in figure 2, as obtained from an |S33| measurement.
Middle panel: map of the corresponding phases φ, obtained from an S31 measurement, in a black-
white plot. Bottom part: phase asymmetry 〈�φ〉 as a function of frequency.

The cross-like structures deserve a separate treatment. Semiclassically, the cross-like state
is just an independent superposition of two structures oriented along the diagonals of the dot.
Each of these structures corresponds classically to a particle that is injected from one port,
then follows the diagonal trajectory, undergoing reflection at the upper corner, before leaving
the billiard through the same port. Classically there is no contribution to transport. Figure 2,
on the other hand, clearly shows that the cross-like structures do contribute to the transport.

So there must be a quantum mechanical admixture of the states, or, expressed in other
words, a dynamical tunnelling coupling of these states. This, however, implies that the
originally twofold degenerate states split into doublets, with a symmetric wavefunction
associated with the lower, and an anti-symmetric one with the higher energy. An inspection
of the spectrum unfortunately does not show any indication of a doublet splitting (see, e.g. the
resonances marked by the letters b, d in figure 2). This could not be expected, anyway. In
the only previous microwave experiment on chaos-assisted tunnelling, the observed splittings
were below 1 MHz [20], much smaller than the line widths observed in the present set-up.
Superconducting resonators were essential to resolve such splittings. In the open microwave dot



Letter to the Editor L197

Figure 5. Phase asymmetry 〈�φ〉 as a function of frequency. The frequencies corresponding to
cross-like wavefunctions are marked by vertical dashed lines.

used in this work, superconducting cavities would not have been of use anyway, since the line
widths are limited mainly by the openings, and not by the absorption in the walls.

Fortunately there is an alternative means to obtain direct evidence of dynamical tunnelling,
even in cases where the line splitting cannot be resolved. This is illustrated in figure 4.
The upper panel shows again the wavefunction at 15.285 GHz, marked by the letter b in
figure 2, but in addition the wavefunctions in the lower and higher frequency wings of the
resonance are shown as well. There is no noticeable difference between the three patterns.
A completely different impression emerges, however, when, in addition, the phases obtained
from the transmission S31 are also considered. In the middle panel of figure 4 the corresponding
phase maps are depicted, demonstrating without any doubt that the wavefunction is symmetric
in the low, and anti-symmetric in the high frequency wing of the resonance. To make this even
more evident, we calculated the phase asymmetry of the wavefunction via

〈�φ〉 = 〈φ(x, y) − φ(−x, y)〉, (4)

where the average is over the area of the dot. 〈�φ〉 should be zero for the symmetric case and
π for the antisymmetric case. The bottom part of figure 4 shows the phase asymmetry for the
15.285 GHz resonance as a function of frequency. Though the ideal values zero and π are
not obtained, a change from symmetric to anti-symmetric behaviour while passing through
the resonance is unmistakable. Figure 5 shows the phase asymmetry over a larger frequency
range. Frequencies associated with cross-like resonances are marked by vertical dotted lines.
For each of these frequencies the phase asymmetry passes through π/2, from below to above
with increasing frequency. We have thus obtained direct evidence of dynamical tunnelling,
using nothing but the change of the symmetry properties of the wavefunction upon passing
through the resonances.

In conclusion, we have demonstrated a novel manifestation of dynamical tunnelling in a
soft-walled microwave resonator. The wavefunction of this system exhibits scarring due to a
number of different bouncing orbits, and the eigenfrequencies of these scars were shown to be
well described by the WKB approximation. In contrast to previous work, where dynamical
tunnelling has been identified by detecting its associated splitting of the eigenspectrum, in this
report we obtained direct evidence for the tunnelling process by studying the evolution of the
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wavefunction phase as a function of energy (i.e. frequency). This allowed us to identify the
conditions for dynamical tunnelling, even though its related level splittings were irresolvable
in this system. Our investigations provide a useful analogue of quantum transport in open
quantum dots, and demonstrate the importance of dynamical tunnelling that arises from the
mixed classical dynamics that is inherent to these structures.

This work was supported by the Deutsche Forschungsgemeinschaft via individual grants. Work
at the University at Buffalo is supported by the Department of Energy, the Office of Naval
Research and the New York State Office of Science, Technology and Academic Research
(NYSTAR).

References

[1] Marcus C M, Rimberg A J, Westervelt R M, Hopkins P F and Gossard A C 1992 Phys. Rev. Lett. 69 506
[2] Chang A M, Baranger H U, Pfeiffer L N and West K W 1994 Phys. Rev. Lett. 73 2111
[3] Taylor R P, Newbury R, Sachrajda A, Feng Y, Coleridge P T, Dettmann C, Zhu N, Guo H, Delage A, Kelly P J and

Wasilewski Z 1997 Phys. Rev. Lett. 78 1952
[4] Sachrajda A S, Ketzmerick R, Gould C, Feng Y, Kelly P J, Delage A and Wasilewski Z 1998 Phys. Rev. Lett.

80 1948
[5] Bird J P, Akis R, Ferry D K, Vasileska D, Cooper J, Aoyagi Y and Sugano T 1999 Phys. Rev. Lett. 82 4691
[6] Moura A, Lai Y C, Akis R, Bird J P and Ferry D K 2002 Phys. Rev. Lett. 88 236804
[7] Ferry D K, Akis R and Bird J P 2004 Phys. Rev. Lett. 93 026803
[8] Zurek W H 2003 Rev. Mod. Phys. 75 715
[9] Ketzmerick R 1996 Phys. Rev. B 54 10841

[10] Ferry D K, Akis R and Bird J P 2005 J. Phys.: Condens. Matter 17 S1017
[11] Davis M J and Heller E J 1981 J. Chem. Phys. 75 246
[12] Tomsovic S and Ullmo D 1994 Phys. Rev. E 50 145
[13] Frischat S D and Doron E 1998 Phys. Rev. E 57 1421
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